On Clustering Stability

Department of Statistics, University of Washington

Hanyu Zhang

Problem

- Given data *D* and one of the following:
 - Loss-based clustering: a partition C of data D that minimizes a loss function L(C, D)

Problem

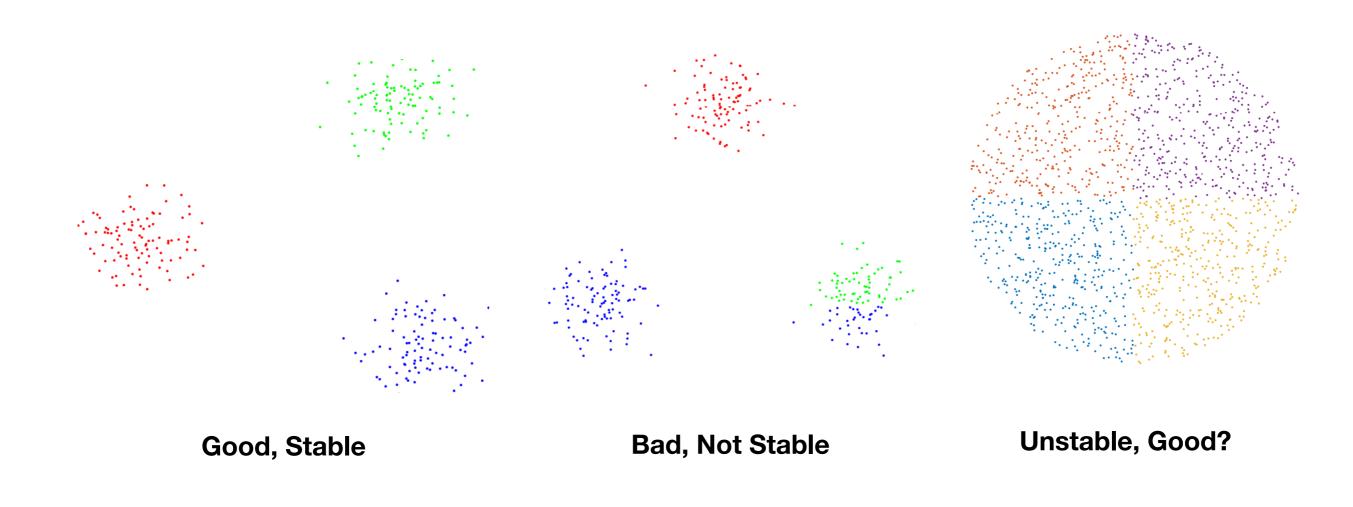
- Given data *D* and one of the following:
 - Loss-based clustering: a partition C of data D that minimizes a loss function L(C, D)
 - Model-based clustering: a model P fitted to the data from some model class

Problem

- Given data *D* and one of the following:
 - Loss-based clustering: a partition C of data D that minimizes a loss function L(C, D)
 - Model-based clustering: a model P fitted to the data from some model class

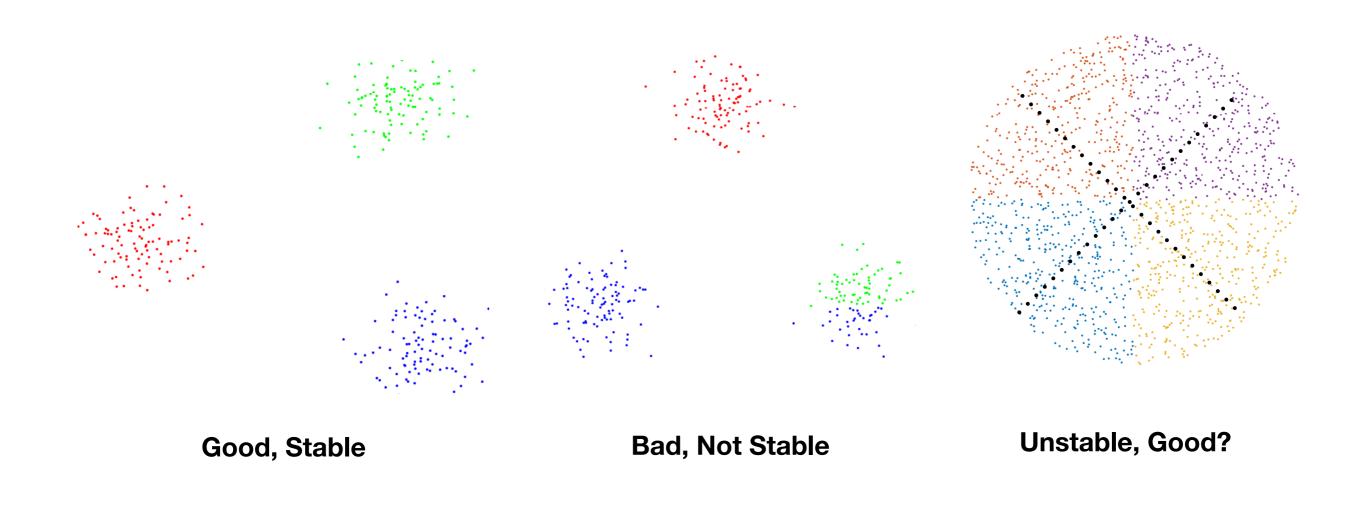
Target: Decide whether *C* or *P* is meaningful.

Intuition: Loss-based clustering


- Loss-based clustering:
 - A loss-based clustering seeks a partition *C* of Data *D* that minimizes a loss function *L*(*C*,*D*)

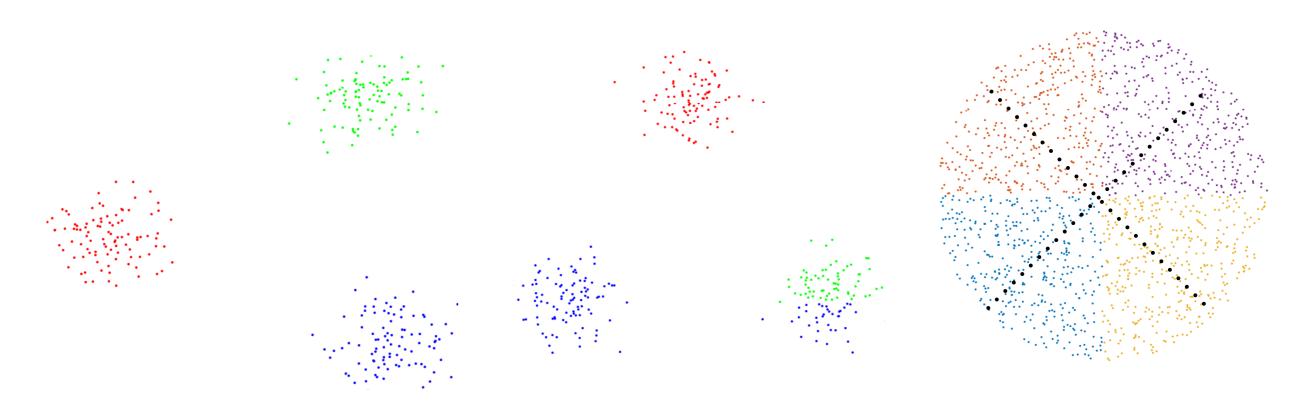
Intuition: Loss-based clustering

- Loss-based clustering:
 - A loss-based clustering seeks a partition *C* of
 Data *D* that minimizes a loss function *L*(*C*,*D*)
 - A meaningful clustering C should have a small loss and have a stability property


Example: K-means Clustering

A meaningful clustering on data should be good and stable

Example: K-means Clustering


A meaningful clustering on data should be good and stable

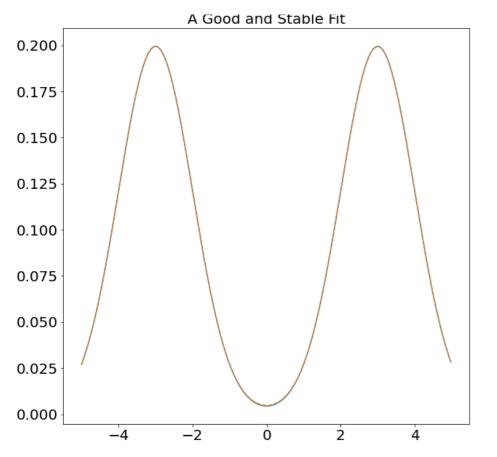
Main Result: loss-based clustering

- Given data *D* and a clustering *Ĉ* obtained by trying to minimize some loss *L*(*C*, *D*):
 - Any other clustering C' such that $L(C', D) \leq L(\hat{C}, D)$ is close to \hat{C} in earth mover's distance under some computable conditions of \hat{C} .

Example: K-means Clustering

Good, Stable, d=1e-4

Bad, Not Stable, No Guarantee Unstable, Good? No Guarantee


Intuition: Model-based clustering

- Model-based clustering:
 - A model-based clustering fits the data to a model P

Intuition: Model-based clustering

- Model-based clustering:
 - A model-based clustering fits the data to a model P
 - A meaningful fitted model *P* for model-based clustering should be also be good and stable.

A meaningful fitted model should be good and stable

True Density P = ?

Fitted Density $\hat{P} = 0.5N(-3,1) + 0.5N(3,1)$

Total Variation Distance: $d_{TV}(P, \hat{P}) \leq \epsilon = 0.001$

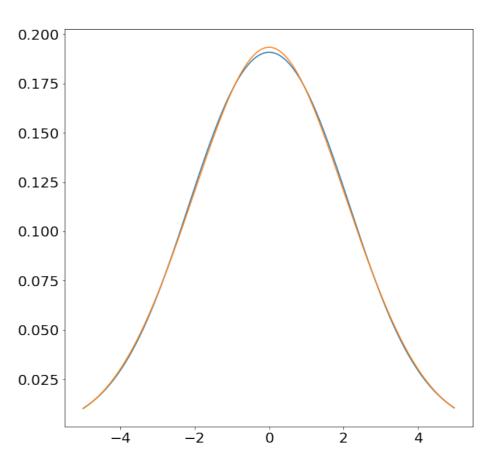
A Good and Stable Fit

Example: Model-based Clustering

A meaningful fitted model should be good and stable

P: A gaussian mixture with 4 components, means at (-3,-1,1,3), each variance = 2.25

P': A gaussian mixture with 5 components, means at (-4,-2,0,2,4), each variance = 2.25


Example: Model-based Clustering

A meaningful fitted model should be good and stable

P: A gaussian mixture with 4 components, means at (-3,-1,1,3), each variance = 2.25

P': A gaussian mixture with 5 components, means at (-4,-2,0,2,4), each variance = 2.25

A Good but Unstable Fit

Main Result: Model-based clustering

P in Model class $M(K, \pi_{\min}, c)$ if:

•
$$P = \sum_{k=1}^{K} \pi_k N_d(\mu_k, \sigma_k^2 I_d), \quad \sum_{k=1}^{K} \pi_k = 1, \pi_k \ge 0$$

• Minimum weight $\min \pi_i \ge \pi_{\min}$

• Minimum separation
$$\min_{i \neq j} \frac{\|\mu_i - \mu_j\|}{\sigma_i + \sigma_j} \ge c$$

Main Result: Model-based clustering

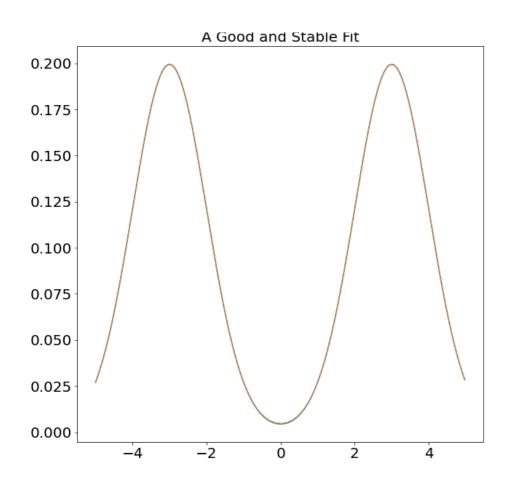
- Given data *D* from true density *P* and a model \hat{P} in model class $M(K, \pi_{\min}, c)$ such that total variation distance $d_{TV}(\hat{P}, P) \leq \epsilon$
 - Under computable conditions on K, π_{\min} , c, ϵ , any other $P' \in M(K', \pi_{\min}, c)$ such that $d_{TV}(P', P) \le \epsilon$ must

have K' = K, and close in parametric distance to \hat{P} .

Example: Model-based Clustering

A Good and Stable Fit

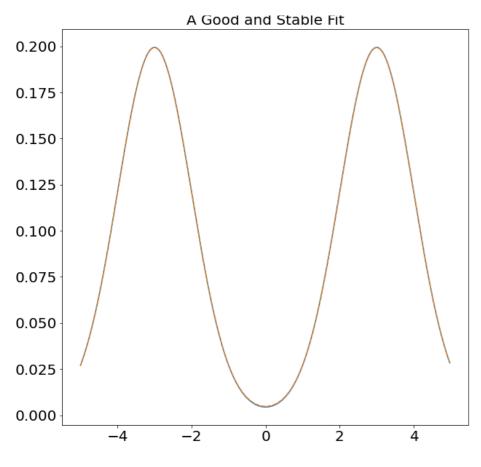
True Density P = ?


Fitted Density $\hat{P} = 0.5N(-3,1) + 0.5N(3,1)$

Total Variation Distance: $d_{TV}(P, \hat{P}) \leq 0.001$

A Good and Stable Fit

Example: Model-based Clustering


True Density P = ?

Fitted Density $\hat{P} = 0.5N(-3,1) + 0.5N(3,1)$ Any Density $P' \in M(2,0.45,3)$ Total Variation Distance: $d_{TV}(P, \hat{P}), d_{TV}(P, P') \leq 0.001$ $P' = \pi_1 N(\mu_1, \sigma_1^2) + \pi_2 N(\mu_2, \sigma_2^2)$ $\mu_1 < \mu_2$

A Good and Stable Fit

True Density P = ?

A Good and Stable Fit

Fitted Density $\hat{P} = 0.5N(-3,1) + 0.5N(3,1)$ Any Density $P' \in M(2,0.45,3)$ Total Variation Distance: $d_{TV}(P, \hat{P}), d_{TV}(P, P') \leq 0.001$ $P' = \pi_1 N(\mu_1, \sigma_1^2) + \pi_2 N(\mu_2, \sigma_2^2)$ $\mu_1 < \mu_2$

Mean: $|\mu_1 - (-3)| \le 0.02, |\mu_2 - 3| \le 0.02$

Variance: $\max\{\sigma_{1,2}^2, 1/\sigma_{1,2}^2\} \le 1.034$

Weight: $\max\{|\pi_1 - 0.5|, |\pi_2 - 0.5|\} \le 0.004$

Thank you!